DATA SHEET

Part No.	AN12978A
Package Code No.	UBGA015-W-2020

Contents

Overview	3
■ Features	3
Applications	3
Package	3
■ Туре	3
Application Circuit Example (Block Diagram)	4
Pin Descriptions	5
Absolute Maximum Ratings	6
■ Operating Supply Voltage Range	6
Electrical Characteristics	7
■ Electrical Characteristics (Reference values for design)	9
■ Technical Data	10
Usage Notes	20

AN12978A

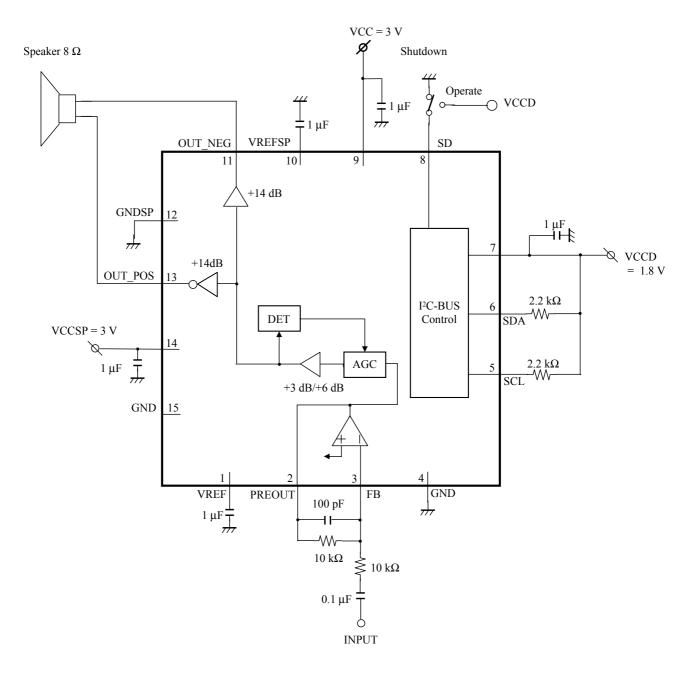
AN12978A Monaural BTL amplifier IC with built-in AGC (I²C bus-control correspondence)

Overview

AN12978A is the monaural BTL amplifier which contained the AGC circuit for clip prevention of a speaker output. This IC performs a mode change by the I²C bus control system. (Standby function ON/OFF change etc.)

Features

- Selection by I²C bus control is possible in the on-level of AGC. (3-bit, 8-step)
- Selection by I²C bus control is possible in an attack/recovery time of AGC. (attack: 2-bit, recovery: 3-bit)
- •The resistance and the capacitor of a detector circuit which were being used for the conventional AGC are unnecessary.
- In order to realize high efficiency of output power, it adopts CMOS power amplifier circuit.
- Built-in shutdown function.
- Built-in Gv-Switch.


Applications

• Audio amplifier for mobile, such as a cellular phone

Package

- 15 pin Wafer level chip size package (WLCSP) Size: 2.0 mm × 2.0 mm (0.5 mm pitch)
- Type
 - Bi-CMOS IC

■ Application Circuit Example (Block Diagram)

Note) 1. This circuit and these circuit constants show an example and do not guarantee the design as a mass-production set. 2. The threshold voltage at 8pin has the VCCD dependency.

Panasonic

Pin Descriptions

Pin No.	Pin name	Туре	Description			
1	VREF	Output	Reference Voltage Output			
2	PREOUT	Output	Pre-amplifier Output			
3	FB	Input	Pre-amplifier Negative Feedback Input			
4	GND	Ground	Ground			
5	SCL	Input	SCL Input on I ² C-bus Control			
6	SDA	Input / Output	SDA Input on I ² C-bus Control			
7	VCCD	Power Supply	Power supply for logic circuit			
8	SD	Input	Shutdown Control			
9	VCC	Power Supply	Power supply			
10	VREFSP	Output	Reference Voltage Output for Speaker Amplifier			
11	OUT_NEG	Output	Speaker Output (Negative Phase)			
12	GNDSP	Ground	Ground for Speaker Amplifier			
13	OUT_POS	Output	Speaker Output (Positive Phase)			
14	VCCSP	Power Supply	Power supply for Speaker Amplifier			
15	GND	Ground	Ground			

Absolute Maximum Ratings

A No.	Parameter	Symbol Rating		Unit	Note
	1 Supply voltage		5.5		
1			3.6	V	*1
			5.5		
2	Supply current	I _{CC}		А	
3	Power dissipation	P _D	120	mW	*2
4	Operating ambient temperature	T _{opr}	-20 to +70	°C	*3
5	Storage temperature	T _{stg}	-55 to +150	°C	*3

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2: The power dissipation shown is the value at $T_a = 70^{\circ}$ C for the independent (unmounted) IC package without a heat sink.

When using this IC, refer to the \bullet P_D – T_a diagram in the Technical Data and use under the condition not exceeding the allowable value.

*3: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

Operating Supply Voltage Range

Parameter	Symbol	Range	Unit	Note
	VCC	2.7 to 4.5		
Several to and the several s	VCCD	1.7 to 2.6	N V	*1
Supply voltage range	VCCD	1.7 to 3.3		*2
	VCCSP	2.7 to 4.5		

Note) 1. The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

2. *1: The values under Fast mode.

*2: The values under Standard mode.

AN12978A

Electrical Characteristics at VCC = 3.0 V , VCCD = 1.8 V , VCCSP = 3.0 V

Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

в	Parameter	Symbol	Quanditiana		Limits		1.1 :4	No
No.	0.		Conditions	Min	Тур	Max	Unit	te
Circ	uit Current	-						
1	Circuit current at non-signal 1 (VCC)	IVCC1A	VCC = 3.0V, Non-signal STB = OFF, SP = ON, AGC = ON	0.5	2.4	4.5	mA	
2	Circuit current at non-signal 2 (VCCSP)	IVCC2A	VCCSP = 3.0V, Non-signal STB = OFF, SP = ON, AGC = ON	1.0	6.5	15.5	mA	
3	Circuit current at non-signal 3 (VCCD)	IVCC3A	VCCD = 1.8V, Non-signal STB = OFF, SP = ON, AGC = ON		0.1	10	μΑ	
4	Circuit current at standby mode 1 (VCC)	IVCC1B	VCC = 3.0V, Non-signal STB = ON, SP = OFF, AGC = ON		0.1	1.0	μΑ	
5	Circuit current at standby mode 2 (VCCSP)	IVCC2B	VCCSP = 3.0V, Non-signal STB = ON, SP = OFF, AGC = ON		0.1	1.0	μΑ	
6	Circuit current at standby mode 3 (VCCD)	IVCC3B	VCCD = 1.8V, Non-signal STB = ON, SP = OFF, AGC = ON		0.1	1.0	μΑ	
7	Circuit current at speaker save mode 1 (VCC)	IVCC1C	VCC = 3.0 V, Non-signal STB = OFF, SP = OFF, AGC = ON	0.5	2.4	4.5	mA	
8	Circuit current at speaker save mode 2 (VCCSP)				0.3	1.0	mA	
9	Circuit current at speaker save mode 3 (VCCD)	IVCC3C	VCCD = 1.8 V, Non-signal STB = OFF, SP = OFF, AGC = ON		0.1	10	μΑ	
Inpu	t/output characteristics							_
11	SP reference output level	VSPO	Vin = -31.0 dBV, f = 1 kHz RL = 8 Ω , GAIN = +23 dB	-9.5	-8.0	-6.5	dBV	
12	SP reference output distortion	THSPO	Vin = -31.0 dBV , f = 1 kHz RL = 8 Ω , GAIN = $+23 \text{dB}$ to THD5th		0.07	0.5	%	
13	SP output noise voltage	VNSPO	Non-Signal using A curve filter GAIN = +23 Db		-78	-71	dBV	
14	SP maximum rating output	VMSPO	THD = 10%, f = 1 kHz RL = 8 Ω , AGC = OFF	300	500		mW	
15	SP output level at power save	VSSPO	Vin = -31.0 dBV , f = 1 kHz RL = 8 Ω , GAIN = $+23 \text{ dB}$ using A curve filter		-114	-90	dBV	
16	SP AGC output level 1	VSPOA1	Vin = -17.0 dBV , f = 1 kHz RL = 8 Ω , GAIN = $+23 \text{ dB}$ AGC-Level = 4 dBV	3.0	4.0	5.0	dBV	
17	SP AGC output level 2	VSPOA2	Vin = -12.0 dBV , f = 1 kHz RL = 8 Ω , GAIN = $+23 \text{ dB}$ AGC-Level = 4 dBV	3.0	4.0	5.0	dBV	

Electrical Characteristics at VCC = 3.0 V, VCCD = 1.8 V, VCCSP = 3.0 V (continued) Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

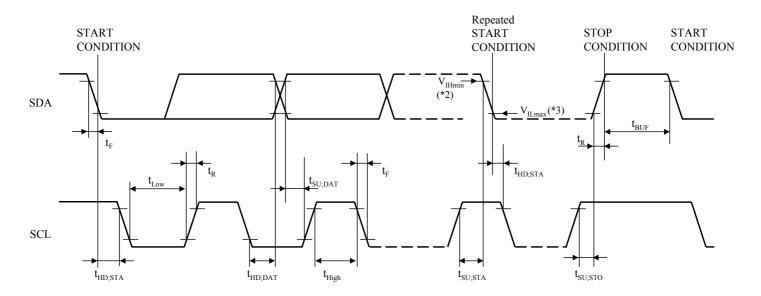
в	Deveneter	Current el	Conditions		Limits		1 1	No
No.	Parameter	Symbol	Conditions	Min	Тур	Max	Unit	te
l²C i	nterface							
43	SCL, SDA signal input Low Level	V _{IL}		- 0.5		$0.3 \times VCCD$	V	
44	SCL, SDA signal input Low Level	V _{IH}		0.7 × VCCD		VCCD + 0.5	V	
45	SDA output signal Low Level	V _{OL}	Open corrector Sync current: 3 mA	0		$0.2 \times VCCD$	V	
46	SCL,SDA Signal Input Current	Ii	Input voltage: 0.1 V to 1.7 V	-10	_	10	μΑ	
47	SCL maximum frequency of signal input	$\mathbf{f}_{\mathrm{SCL}}$		0		400	kHz	
The	threshold voltage at 8-pin							
48	SD input Low Level	Vresetlth				0.1 × VCCD	V	
49	SD input High Level	Vresethth		0.9 × VCCD			V	

AN12978A

Panasonic

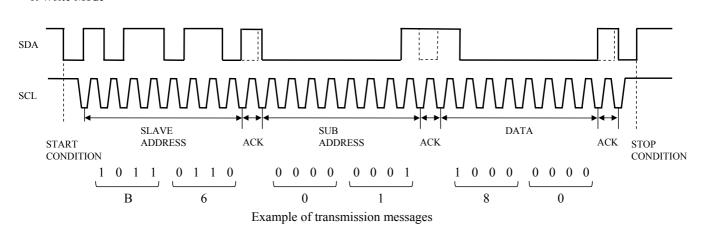
■ Electrical Characteristics (Reference values for design) at VCC = 3.0 V , VCCD = 1.8 V , VCCSP = 3.0 V

Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.


The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

В	B Parameter		Conditions		Limits		Unit	No
No.	Parameter	Symbol	Symbol Conditions		Тур	Max	Unit	te
I ² C in	terface							
66	Bass free time between a condition of stop and a condition of start	t _{BUF}		1.3			μs	*1
67	Setup time of a condition of start	t _{SU;STA}		0.6			μs	*1
68	Hold time of a condition for start	t _{HD;STA}		0.6			μs	*1
69	"L" time of SCL clock	t_{Low}		1.3			μs	*1
70	"H" time of SCL clock	$\mathbf{t}_{\mathrm{High}}$		0.6			μs	*1
71	Rising time of SDA, SCL signal	t _R				0.3	μs	*1
72	Fall time of SDA,SCL signal	t _F				0.3	μs	*1
73	Data setup time	t _{su;dat}		0.1			μs	*1
74	Data hold time	t _{HD;DAT}		0		0.9	μs	*1
75	Rising up time of a condition of stop	t _{SU;STO}		0.6			μs	*1

Note) *1: All values are $V_{IHmin} \left(*2\right)$ and $V_{ILmax} \left(*3\right)$ level standard.


*2: V_{IHmin} is the minimum limit of the signal input high level.

*3: $V_{{\rm IL}{\rm max}}$ is the maximum limit of the signal input low level.

Technical Data

Two transmission messages (i.e., the SCL and SDA) are sent in synchronous serial transmission. The SCL is a clock with fixed frequency. The SDA indicates address data for the control of the reception side, and is sent in parallel in synchronization with the SCL. The data is transmitted in 8-bit, 3 octets (bytes) in principle, where every octet has an acknowledge bit. The following description provides information on the structure of the frame.

<Start Conditions>

When the level of the SDA changes to low from high while the level of the SCL is high, the data reception of the receiver will be enabled.

<Stop Conditions>

When the level of the SDA changes to high from low while the level of the SCL is high, the data reception of the receiver will be aborted.

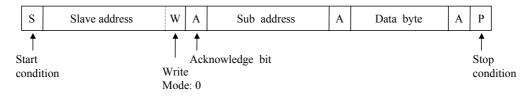
<Slave Address>

The slave address is a specified one unique to each device. When the address of another device is sent, the reception will be aborted.

<Sub Address>

The sub address is a specified one unique to each function.

<Data>


Data is information under control.

<Acknowledge Bit>

The acknowledge bit is used to enable the master to acknowledge the reception of data for each octet. The master acknowledges the data reception of the receiver by transmitting a high-level signal to the receiver and receiving a low-level signal returned from the receiver as shown by the dotted lines in Fig. The communication will be aborted if the low signal is not returned.

The SDA will not change when the level of the SCL is high except start or stop conditions are enabled.

- I²C-bus Mode (continued)
 - 1. Write Mode (continued)
 - (a) I²C-bus PROTOCOL
 - Slave address: 10110110 (B6Hex)
 - Format (normal)

(b) Auto increment

- · Sub-address 0*Hex: Auto increment mode
 - (When the data is sent in sequence, the sub address will change one by one and the data will be input.)

• Auto increment mode

110))		
S	Slave address	WA	Sub address	A	Data 1	Α	Data 2	A	R	Data n	A	Р
-									π			

(c) Initial condition

The initial state of the device is not guaranteed. Therefore, the input of 00Hex resister-D0 (Note.1) will be absolutely 0, when the power is turned ON.

(d) Sub-address Byte and Data Byte Format

Out address	MSB		Data byte							
Sub-address	D7	D6	D5	D4	D3	D2	D1	D0		
*0Hex	$GAIN 0 \rightarrow +23 dB 1 \rightarrow +26 dB$	AGC-ON VCCSP dependence $0 \rightarrow OFF$ $1 \rightarrow ON$	0 (Note.2)	0 (Note.2)	$\begin{array}{l} AGC \\ 0 \rightarrow OFF \\ 1 \rightarrow ON \end{array}$	SP Save $0 \rightarrow ON$ $1 \rightarrow OFF$	Standby $0 \rightarrow ON$ $1 \rightarrow OFF$	0 (Note.1)		
*1Hex	AGC-ON data bit3	AGC-ON data bit2	AGC-ON data bit1	AGC-REC data bit3	AGC-REC data bit2	AGC-REC data bit1	AGC-ATT data bit2	AGC-ATT data bit1		
*2Hex	0 (Note.2)	0 (Note.2)	0 (Note.2)	*	*	0 (Note.2)	0 (Note.2)	0 (Note.2)		

<00Hex Register> D0, D4, D5: Always set to 0 D1: Standby ON/OFF switch

- D2: SP Save ON/OFF switch
- D3: AGC ON/OFF switch
- D6: AGC-ON VCCSP dependence ON/OFF selection

D7: GAIN +17 dB/+20 dB selection

- <01Hex Register>
- D0, D1 : AGC-attack-time selection
- D2, D3, D4: AGC-recovery-time selection
- D5,D6,D7: AGC-on-level selection

<02Hex Register>

D0 to D7: Always set to 0 (test & adjust mode)

Please use these bit only Data = "0", because they are used by our company's final test and fine-tuning AGC-on level.

• I²C-bus Mode (continued)

- 1. Write Mode (continued)
 - (e) AGC-attack-time selection

	′rite Register	Attack
D1	D0	time
0	0	0.5 ms
0	1	1 ms
1	0	2 ms
1	1	4 ms

(f) AGC-recovery-time selection

0	Write 01Hex Register							
D4	D3	D2	time					
0	0	0	1.0 s					
0	0	1	1.5 s					
0	1	0	2.0 s					
0	1	1	3.0 s					
1	0	0	4.0 s					
1	0	1	6.0 s					
1	1	0	8.0 s					
1	1	1	12.0 s					

(g) AGC-on-level selection (at VCC = 3.0 V, VCCSP = 3.0 V)

Write 01Hex Register		AGC On	Output Po (RL = 8W)	VCCSP (推奨値)		
D7	D6	D5	Level	10(IL-0W)	(延关恒)	
0	0	0	1 dBV	157 mW		
0	0	1	2 dBV	198 mW		
0	1	0	3 dBV	249 mW		
0	1	1	4 dBV	314 mW	3.0 V ≤	
1	0	0	5 dBV	395 mW	3.3 V ≤	
1	0	1	6 dBV	498 mW	3.7 V ≤	
1	1	0	7 dBV	626 mW	4.1 V ≤	
1	1	1	8 dBV	789 mW	4.5 V	

(h) AGC-on-level VCCSP dependence mode (at AGC On Level = 4 dBV)

AGC ON level increases by 0.75 dBV with each 0.3 V increase of VCCSP, and baseline of VCCSP is 3.0 V at AGC-onlevel VCCSP dependence mode. When VCCSP is 3.0 V, AGC ON level is set according to table (g).

VCCSP	AGC On Level	Output Po (RL = 8 Ω)	VCCSP	AGC On Level	Output Po (RL = 8 Ω)
2.7 V	3.25 dBV	264 mW	3.9 V	6.25 dBV	527 mW
3.0 V	4 dBV	314 mW	4.2 V	7 dBV	626 mW
3.3 V	4.75 dBV	373 mW	4.5 V	7.75 dBV	745 mW
3.6 V	5.5 dBV	444 mW			

- I²C-bus Mode (continued)
 - 2. Read Mode
 - (a) I²C-bus PROTOCOL
 - Slave address 10110111(B7Hex)
 - Format

S	Slave address	R	Α	Data 0	A	Data 1	A	Data 2	A	Р
Read										

Mode: 1

Note) At the slave address input, it is sequentially output from data 0. There is no necessity for inputting the sub-address.

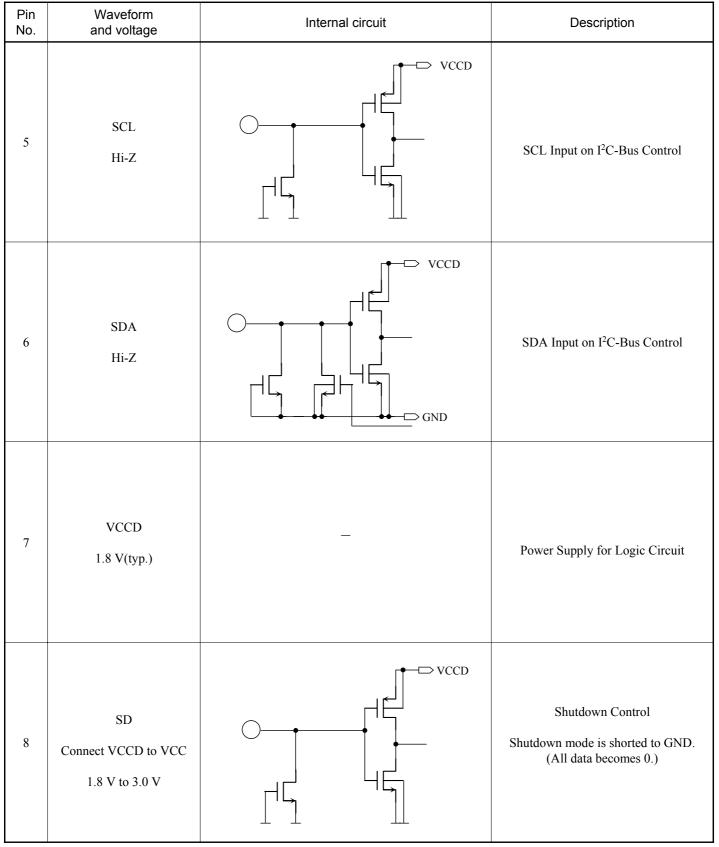
(b) Sub-address Byte and Data Byte Format

	MSB Data byte							
	D7	D6	D5	D4	D3	D2	D1	D0
Data 0	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address
	*0Hex	*0Hex	*0Hex	*0Hex	*0Hex	*0Hex	*0Hex	*0Hex
	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data
	[D7]	[D6]	[D5]	[D4]	[D3]	[D2]	[D1]	[D0]
Data 1	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address
	*1Hex	*1Hex	*1Hex	*1Hex	*1Hex	*1Hex	*1Hex	*1Hex
	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data
	[D7]	[D6]	[D5]	[D4]	[D3]	[D2]	[D1]	[D0]
Data 2	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address	Sub address
	*2Hex	*2Hex	*2Hex	*2Hex	*2Hex	*2Hex	*2Hex	*2Hex
	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data	Latch data
	[D7]	[D6]	[D5]	[D4]	[D3]	[D2]	[D1]	[D0]

• Operating temperature guarantee of I²C-bus Control

The performance in the ambient temperature of operation is guaranteed theoretically in the design at normal temperature $(25^{\circ}C)$ by inspecting it at a speed of the clock that is about 50% earlier regarding the operating temperature guarantee of I²C-bus Control.

But the following characteristics are logical values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, Panasonic will respond in good faith to customer concerns.


- Usage note of I²C bus
- The I²C bus of this product is designed to correspond to Standard mode (100 Kbps) and Fast mode (400 Kbps) in Philips Corporation I²C specification version 2.1. However, not correspond to High Speed mode (to 3.4 Mbps).
- This product operate as a slave device in I²C bus system.
- This product is not confirm to operate in multi-master bus system and mixing -speed bus system. And this product is not confirm connectivity to CBUS receiver. If using this product in these mode, please confirm availability to our company.
- Purchase of Panasonic I²C components conveys a license to use these components in an I²C systems under the Philips I²C patent right on condition that using condition conform to I²C standard specification approved by Philips Corporation.

 I/O block circuit diagrams and pin function descriptions Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Description
1	VREF DC 1.45 V	VCC \sim	Reference Voltage Output
2	PREOUT DC 1.45 V	S00 VCC	Pre-amplifier Output
3	FB DC 1.45 V		Pre-amplifier Negative Feedback Input
4	GND		Ground

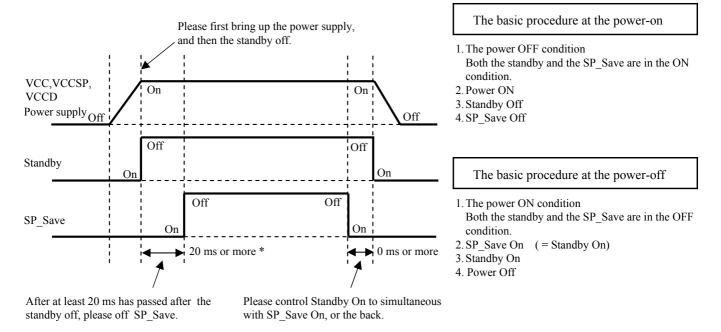
• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

• I/O block circuit diagrams and pin function descriptions (continued) Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Description
9	VCC 3.0 V(typ.)		Power Supply
10	VREFSP 3.0 V(typ.)		Reference Voltage Output for Speaker Amplifier
11	OUT_NEG DC 1.45 V	-C	Speaker Output (Negative Phase)
12	GNDSP		Ground for Speaker Amplifier

• I/O block circuit diagrams and pin function descriptions (continued) Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

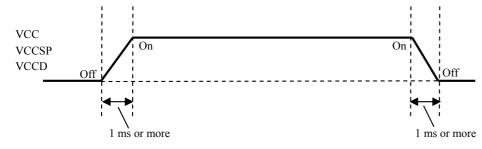

Pin No.	Waveform and voltage	Internal circuit	Description
13	OUT_POS DC 1.45 V	VCCSP VCCSP VCCSP VCCSP VCCSP GNDSP	Speaker Output (Positive Phase)
14	VCCSP 3.0 V(typ.)		Power Supply for Speaker Amplifier
15	GND		Ground

• Power supply and logic sequence

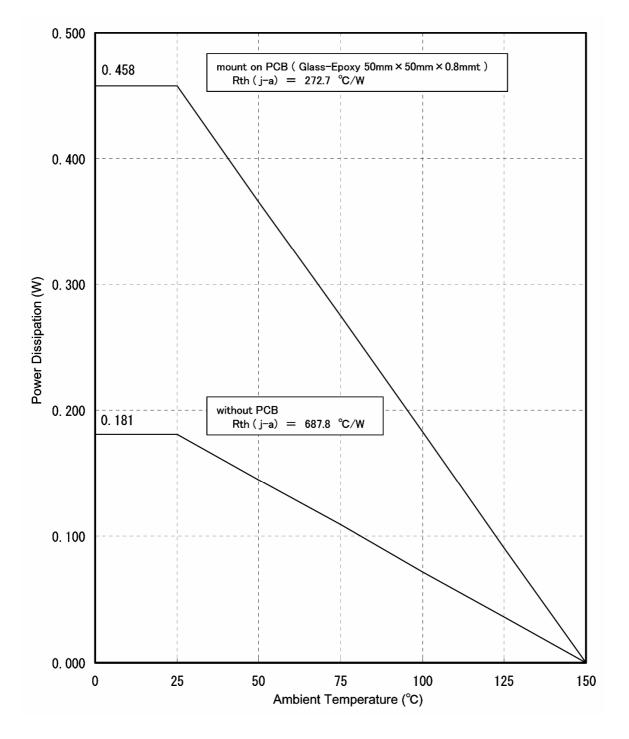
Note) The characteristics listed below are reference values based on the IC design and are not guaranteed.

The timing control of power-ON/OFF and each logic according to the procedure below should be recommended for the best pop performance caused in switching.

1. The sequence of the power supply and each logic



Note) *: This IC contains the pre-charge circuit. It is time until each bias is stabilized from Standby Off. It depends for this time on the capacity value linked to a reference voltage terminal (VREF and VREFSP), and the capacity value and resistance linked to an input terminal (IN).


It is a recommendation value in a constant given in the example of Application Circuit Example (Block Diagram).

2. The sequence of VCC and VCCSP and VCCD

This IC have not a standup and falling order in VCC and VCCSP. A standup and falling time of VCC and VCCSP recommend 1 or more ms.

- Technical Data (continued)
- $P_D T_a$ diagram

Usage Notes

- 1. Please take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as SP output pin (Pin11, Pin13) power supply pin short, SP output pin (Pin11, Pin13) GND short, or SP output (Pin11, Pin13) -to-SP output-pin short (load short).
- 2. Please absolutely do not mount the IC in the reverse direction on to the printed-circuit-board. It damaged when the electricity is turned on.
- 3. Please do not make it open, because the open SD-pin (Pin8) is not fixed.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805